63 research outputs found

    Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas

    Get PDF
    The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion of freshwater withdrawals in the United States, and shifting where electricity generation occurs can allow the grid to act as a virtual water pipeline, increasing water availability in regions with drought by reducing water consumption and withdrawals for power generation. During a 2006 drought, shifting electricity generation out of the most impacted areas of South Texas (~10% of base case generation) to other parts of the grid would have been feasible using transmission and power generation available at the time, and some areas would experience changes in air quality. Although expensive, drought-based electricity dispatch is a potential parallel strategy that can be faster to implement than other infrastructure changes, such as air cooling or water pipelines.National Science Foundation (U.S.). Office of Emerging Frontiers in Research and Innovation (Grant 0835414)United States. Dept. of Energ

    Climate and Energy-Water-Land System Interactions Technical Report to the U.S. Department of Energy in Support of the National Climate Assessment

    Get PDF
    This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate

    Simulated reduction in upwelling of tropical oxygen minimum waters in a warmer climate

    Get PDF
    Waters of the Atlantic and Pacific tropical oxygen minimum zones (OMZs), located in the poorly ventilated shadow zones of their respective ocean basins, reach the sea surface mostly in the eastern boundary and equatorial upwelling regions, thereby providing nutrients sustaining elevated biological productivity. Associated export of sinking organic matter leads to oxygen consumption at depth, and thereby helps to maintain the tropical OMZs. Biogeochemical feedback processes between nutrient-rich OMZ waters and biological production in the upwelling regions and their net impact on the evolution of the OMZs depend on the strengths of the flow pathways connecting OMZs and the upper ocean, because even though water has to be isolated below the mixed layer for some time in order for OMZs to develop, it has to be brought up to the surface mixed layer eventually in order to exchange properties with the atmosphere. Here, we investigate the connections between OMZs and the surface mixed layer, and their sensitivity to global warming with a coupled ocean–atmosphere general circulation model by analyzing the fate of simulated floats released in the OMZs. We find that under present-day climate conditions, on decadal time scales a much larger portion of the model's OMZ waters reaches the surface ocean in the Pacific than in the Atlantic Ocean: within 20 years, 75% in the Pacific and 38% in the Atlantic. When atmospheric CO2 is doubled, the fraction of modeled OMZ waters reaching the upwelling in the same time decreases by about 25% in both oceans. As a consequence, feedback between biogeochemical processes in OMZs and in the surface ocean is likely to be weakened in the future

    Internet of Things in Sustainable Energy Systems

    Get PDF
    Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy systems approaches, methodologies, scenarios, and tools is presented with a detailed discussion of different sensing and communications techniques. This IoT approach in energy systems is envisioned to enhance the bidirectional interchange of network services in grid by using Internet of Things in grid that will result in enhanced system resilience, reliable data flow, and connectivity optimization. Moreover, the sustainable energy IoT research challenges and innovation opportunities are also discussed to address the complex energy needs of our community and promote a strong energy sector economy

    The U.S. water data gap: A survey of state-level water data platforms to inform the development of a national water portal

    Get PDF
    Water data play a crucial role in the development and assessment of sustainable water management strategies. Water resource assessments are needed for the planning, management, and the evaluation of current practices. They require environmental, climatic, hydrologic, hydrogeologic, industrial, agricultural, energy, and socioeconomic data to assess and accurately project the supply of and demand for water services. Given this context, we provide a review of the current state of publicly available water data in the United States. While considerable progress has been made in data science and model development in recent years, data limitations continue to hamper analytics. A brief overview of the water data sets available at the federal level is used to highlight the gaps in readily accessible water data in the United States. Then, we present a systematic review of 275 websites that provide water information collected at the state level. Data platforms are evaluated based on content (ground and surface water, water quality, and water use information) along with the analytical and exploratory tools that are offered. Wev discuss the degree to which existing state-level data sets could enrich the data available from federal sources and review some recent technological developments and initiatives that may modernize water data. We argue that a national water data portal, more comprehensive than the U.S. Energy Information Administration, addressing the significant gaps and centralizing water data is critical. It would serve to quantify the risks emerging from growing water stress and aging infrastructure and to better inform water management and investment decisions

    The influence of future electricity mix alternatives on southwestern US water resources

    No full text
    A climate driven, water resource systems model of the southwestern US was used to explore the implications of growth, extended drought, and climate warming on the allocation of water among competing uses. The analysis focused on the water benefits from alternative thermoelectric generation mixes, but included other uses, namely irrigated agriculture, municipal indoor and outdoor use, and environmental and inter-state compact requirements. The model, referred to as WEAP-SW, was developed on the Water Evaluation and Planning (WEAP) platform, and is scenario-based and forward projecting from 2008 to 2050. The scenario includes a southwest population that grows from about 55 million to more than 100 million, a prolonged dry period, and a long-term warming trend of 2 ° C by mid-century. In addition, the scenario assumes that water allocation under shortage conditions would prioritize thermoelectric, environmental, and inter-state compacts by shorting first irrigated agriculture, then municipal demands. We show that while thermoelectric cooling water consumption is relatively small compared with other uses, the physical realities and the legal and institutional structures of water use in the region mean that relatively small differences in regional water use across different electricity mix scenarios correspond with more substantial impacts on individual basins and water use sectors. At a region-wide level, these choices influence the buffer against further water stress afforded the region through its generous storage capacity in reservoirs

    The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050

    No full text
    The power sector withdraws more freshwater annually than any other sector in the US. The current portfolio of electricity generating technologies in the US has highly regionalized and technology-specific requirements for water. Water availability differs widely throughout the nation. As a result, assessments of water impacts from the power sector must have a high geographic resolution and consider regional, basin-level differences. The US electricity portfolio is expected to evolve in coming years, shaped by various policy and economic drivers on the international, national and regional level; that evolution will impact power sector water demands. Analysis of future electricity scenarios that incorporate technology options and constraints can provide useful insights about water impacts related to changes to the technology mix. Utilizing outputs from the regional energy deployment system (ReEDS) model, a national electricity sector capacity expansion model with high geographical resolution, we explore potential changes in water use by the US electric sector over the next four decades under various low carbon energy scenarios, nationally and regionally

    Sectoral contributions to surface water stress in the coterminous United States

    No full text
    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast
    corecore